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Previous studies demonstrated that sulfate conjugation is involved in the metabolism of three commonly
used breast cancer drugs, tamoxifen, raloxifene and fulvestrant. The current study was designed to
systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating ral-
oxifene, fulvestrant, and two active metabolites of tamoxifen, afimoxifene and endoxifen. A systematic
analysis using 13 known human SULTs revealed SULT1A1 and SULT1C4 as the major SULTs responsible for
the sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant. Kinetic parameters of these two
human SULTs in catalyzing the sulfation of these drug compounds were determined. Sulfation of afi-
moxifene, endoxifen, raloxifene and fulvestrant under metabolic conditions was examined using HepG2
human hepatoma cells and MCF-7 breast cancer cells. Moreover, human intestine, kidney, liver, and lung
cytosols were examined to verify the presence of afimoxifene/endoxifen/raloxifene/fulvestrant-sulfating
activity.

© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Endocrine therapy, the most prevalent treatment for estrogen
receptor-positive breast cancer, has been in use for more than a
century (1). A great number of endocrine therapeutics have been
developed in recent years, with selective estrogen receptor mod-
ulators (SERMs) and selective estrogen receptor down regulators
(SERDs) being two major classes of these agents (1). Tamoxifen and
raloxifene are both SERMs that act as antagonists of the estrogen
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receptor in breast tissue (1). Tamoxifen, the most extensively tested
endocrine therapy drug, exerts its function via its active metabo-
lites, 4-hydroxytamoxifen (afimoxifene) and N-desmethyl-4-
hydroxytamoxifen (endoxifen) (2e6). While tamoxifen antago-
nizes the effects of estrogen in breast tissue, it causes significant
stimulation of uterine tissue (7). Raloxifene, on the other hand,
lacks uterine stimulation and acts more selectively in antagonizing
the effects of estrogens in the breast and endometrium (8). Ful-
vestrant (faslodex) is a SERDwhich is indicated for the treatment of
estrogen receptor-positive metastatic breast cancer in post-
menopausal women with disease progression following anti-
estrogen therapy (9). Both Phase I and Phase II enzymes have
been reported to be involved in the metabolism of these drugs.
Tamoxifen has been shown to be metabolized to N-desmethylta-
moxifen by CYP3A enzymes (10) and to 4-hydroxytamoxifen and N-
desmethyl-4-hydroxytamoxifen by CYP2D6 (11,12). These latter
tamoxifen metabolites could be further subjected to sulfation and
glucurnidation (13). Raloxifene has been reported to be metabo-
lized by CYP3A4, and raloxifene glucuronides have been detected in
human plasma (12,14). For fulvestrant, while CYP3A4-mediated
nese Pharmacological Society. This is an open access article under the CC BY-NC-ND
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metabolism was found using human liver microsomes, studies
using human hepatocytes indicated that sulfate conjugation rep-
resented a more predominant pathway (15). Both sulfate and
glucuronide metabolites of fulvestrant have been have been
detected in feces of individuals administered with fulvestrant (16).

Sulfate conjugation is a major pathway operated in humans and
other vertebrates for the biotransformation and excretion of drugs/
xenobiotics as well as the homeostasis of key endogenous com-
pounds such as steroid and thyroid hormones, catecholamine,
cholesterol, and bile acids (17e19). The responsible enzymes, called
the cytosolic sulfotransferases (SULTs), catalyze the transfer of a
sulfonate group from the active sulfate, 30-phosphoadenosine 50-
phosphosulfate (PAPS), to an acceptor substrate compound con-
taining a hydroxyl or an amino group (20). Sulfate conjugation by
these enzymes may result in the inactivation of the substrate
compounds and/or increase their water-solubility, thereby facili-
tating their removal from the body (17e19). Several human SULTs
capable of sulfating afimoxifene, endoxifen, raloxifene and fulves-
trant have been identified (13, 22e24; cf. Fig. 1 showing the
chemical structures of these four drug compounds). To better un-
derstand the role of SULT-mediated sulfation in the pharmacoki-
netics of these drugs, however, a more systematic investigation is
needed.

We report in this communication a systematic analysis of the
sulfating activity of all known human SULTs toward afimoxifene,
endoxifen, raloxifene and fulvestrant. The kinetic parameters of
those SULTs that showed strongest sulfating activity toward the
tested drugs were determined. A metabolic labeling study was
performed using cultured HepG2 and MCF-7 cells. Moreover, the
drug-sulfating activity of four major human organ specimens was
evaluated.

2. Materials and methods

2.1. Materials

Afimoxifene, endoxifen, raloxifene, fulvestrant, adenosine 50-
triphosphate (ATP), 30-phosphoadenosine-50-phosphosulfate
(PAPS), N-2-hydroxylpiperazine-N0-2-ethanesulfonic acid (HEPES),
Trizma base, dithiothreitol (DTT), minimum essential medium
(MEM), fetal bovine serum (FBS), penicillin G, streptomycin sulfate
and silica thin-layer chromatography (TLC) plates were products of
Fig. 1. Chemical structures of afimoxifene,
Sigma Chemical Company (St. Louis, MO). Ultrafree-MC 5000
NMWL filter units and cellulose TLC plates were products of EMD
Millipore (Bedford, MA). HepG2 human hepatoma cell line (ATCC
HB-8065) and MCF-7 breast cancer cell line (ATCC HTB-22) were
from American Type Culture Collection (Manassas, VA). Pooled
human small intestine (duodenum and jejunum), kidney, liver, and
lung cytosols were purchased from XenoTech, LLC (Lenexa, KS).
Ecolume scintillation cocktail was fromMP Biomedical, LLC, (Irvine,
CA). All other chemicals were of the highest grade commercially
available.

2.2. Preparation of purified human SULTs

Recombinant human P-form (SULT1A1 and SULT1A2) and M-
form (SULT1A3) phenol SULTs, thyroid hormone SULT (SULT1B1),
two SULT1Cs (SULT1C2 and SULT1C4), estrogen SULT (SULT1E1),
dehydroepiandrosterone (DHEA) SULT (SULT2A1), two SULT2B1s
(SULT2B1a and SULT2B1b), a neuronal SULT (SULT4A1) and
SULT6B1, expressed using pGEX-2TK or pET23c prokaryotic
expression system, were prepared as described previously (24e28).

2.3. SULT assay

The sulfating activity of the recombinant human SULTs was
assayed using PAP[35S] as the sulfate group donor. The standard
assay mixture, in a final volume of 20 mL, contained 50 mM of
HEPES buffer at pH 7.0, 1 mM DTT and 14 mM PAP[35S]. Stock so-
lutions of the substrates, prepared in dimethyl sulfoxide, were used
in the enzymatic assay. The substrate, at 10 times the final con-
centration (10 mM) in the assay mixture, was added after HEPES
buffer and PAP[35S]. The reaction was started by the addition of
0.5 mg of the SULT enzyme, allowed to proceed for 10 min at 37 �C
and terminated by placing the thin-walled tube containing the
assay mixture on a heating block, pre-heated to 100 �C, for 3 min.
The precipitates were cleared by centrifugation at 13,000 rpm for
3 min, and the supernatant was subjected to the analysis of [35S]
sulfated product using the TLC with n-butanol/acetonitrile (3:2; by
volume) for afimoxifene, endoxifen or raloxifene, or n-butanol/
isopropanol/88% formic acid/water (3:1:1:1; by volume) for ful-
vestrant as the solvent system. Upon completion of TLC, the TLC
plate was air dried and autoradiographed using an X-ray film. The
radioactive spots corresponding to the sulfated products were
endoxifen, raloxifene and fulvestrant.
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Table 1A
Specific activity of human SULTs with afimoxifene, endoxifen, raloxifene and ful-
vestrant as substrates.a

Specific Activity (nmol/min/mg)

SULTs Afimoxifene Endoxifen Raloxifene Fulvestrant

1A1 3.24 ± 0.37 2.07 ± 0.22 3.75 ± 0.01 7.77 ± 0.43
1A2 NDb ND ND 3.32 ± 0.30
1A3 ND ND 1.42 ± 0.16 ND
1C4 1.24 ± 0.10 6.51 ± 0.67 35.91 ± 1.47 0.56 ± 0.18
1E1 ND ND ND 1.59 ± 0.77
2A1 0.01 ± 0.01 ND 0.02 ± 0.02 ND

a Specific activity refers to nmol substrate sulfated/min/mg purified enzyme. Data
represent means ± SD derived from three experiments.

b ND refers to activity not detected.
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located, cut out and eluted in 0.5 mL water in a glass vial. After-
wards, 4.5 mL of the Ecolume scintillation liquid was added to each
vial, mixed thoroughly and the radioactivity thereinwas counted by
using a liquid scintillation counter. Each assay was performed in
triplicate, together with a control without enzyme. The results
obtained were calculated and expressed in nanomoles of sulfated
product formed/min/mg purified enzyme. To assay for afimoxifene,
endoxifen, raloxifene or fulvestrant-sulfating activity of human
organ cytosols, the reaction mixture was supplemented with
50 mM NaF (a phosphatase inhibitor). The reaction was started by
the addition of the cytosol and allowed to proceed for 20 min,
followed by the TLC analysis for [35S]sulfated product as described
above.

2.4. Kinetic analysis

In the kinetic studies on the sulfation of afimoxifene, endoxifen
and fulvestrant, the sulfation assays were carried out using varying
concentrations of these substrate compounds and 50 mM HEPES at
pH 7.0 according to the procedure described above. Data obtained
were analyzed based on MichaeliseMenten kinetics using Kalei-
daGraph 4.1 software (Synergy Software Inc., PA) and non-linear
regression.

2.5. Metabolic labeling of HepG2 human hepatoma cells and MCF-7
breast cancer cells

HepG2 cells andMCF-7 cells were routinely maintained, under a
5% CO2 atmosphere at 37 �C, in MEM supplemented with 10% FBS,
penicillin G (30 mg/mL) and streptomycin sulfate (50 mg/mL).
Confluent cells grown in a 24-well culture plate, pre-incubated in
sulfate-free (prepared by omitting streptomycin sulfate and
replacing magnesium sulfate with magnesium chloride) MEM
without FBS for 4 h, were labeled with 0.25 mL aliquots of the same
medium containing [35S]sulfate (0.3 mCi/mL) plus different con-
centrations (5, 10, 25 and 50 mM) of afimoxifene, endoxifen, ral-
oxifene or fulvestrant. At the end of an 18-h labeling period, the
labeling media were collected, spin filtered to remove high-
molecular weight [35S]sulfated macromolecules and subjected to
thin-layer analysis for [35S]sulfated afimoxifene, endoxifen, raloxi-
fene or fulvestrant based on the procedure described above.

2.6. Miscellaneous methods

PAP[35S] was synthesized from ATP and carrier-free [35S]sulfate
using the bifunctional human ATP sulfurylase/adenosine 50-phos-
phosulfate kinase, and its purity was determined as described
previously (29). PAP[35S] synthesized was adjusted to the required
concentration and a specific activity of 15 Ci/mmol at 1.4 mM by the
addition of non-radioactive PAPS. Protein determination was based
on the method of Bradford with bovine serum albumin as the
standard (30).

3. Results and discussion

SULT-mediated sulfation is known to play a critical role in the
metabolism and inactivation of a diverse array of endogenous and
xenobiotic compounds (17e19). Sulfation may result in the inacti-
vation of these compounds and facilitate their removal from the
body (17e19). Previous studies demonstrated that several breast
cancer drugs and/or their metabolites may be subjected to sulfate
conjugation (13,21e23). The current study aimed to systematically
identify those human SULT enzymes capable of sulfating afimox-
ifene, endoxifen, raloxifene, and/or fulvestrant. Sulfation of these
drug compounds under metabolic conditions was examined using
cultured HepG2 human hepatoma cells and MCF-7 breast cancer
cells. Moreover, human organ cytosols were evaluated for sulfating
activities toward these drug compounds.
3.1. Differential sulfating activities of the human SULTs toward
afimoxifene, endoxifen, raloxifene and fulvestrant

To identify the enzymes that are capable of sulfating afimox-
ifene, endoxifen, raloxifene and fulvestrant,13 known human SULTs
(SULT1A1, SULT1A2, SULT1A3, SULT1B2, SULT1C2, SULT1C3,
SULT1C4, SULT1E1, SULT2A1, SULT2B1a, SULT2B1b, SULT4A1,
SULT6B1), previously cloned, expressed, and purified, were exam-
ined for sulfating activity with 10 mM of afimoxifene, endoxifen,
raloxifene and fulvestrant as substrates. Results obtained indicated
that seven (SULT1B2, SULT1C2, SULT1C3, SULT2B1a, SULT2B1b,
SULT4A1 and SULT6B1) of the 13 SULTs displayed no detectable
activities toward any of the four drug compounds. Of the other six
SULTs, SULT1A1 and SULT1C4 exhibited strong sulfating activities
toward all four drug compounds, whereas SULT1A2, SULT1A3,
SULT1E1, and SULT2A1 displayed weaker and differential sulfating
activities toward (some of) the drug compounds tested. Overall,
activity data compiled in Table 1A indicated that SULT1A1 is likely
themajor SULTenzyme involved in the sulfation of afimoxifene and
fulvestrant, while SULT1C4 is a major enzyme responsible for the
sulfation of endoxifen and raloxifene. SULT1A1 has been shown to
be capable of mediating the sulfation of numerous drugs, particu-
larly those that contain phenolic hydroxyl groups in their chemical
structures (31). SULT1C4, initially reported to mediate the sulfation
of N-hydroxy-2-acetylaminofluorene (24), has recently been
shown to be capable of sulfating a wide range of drugs, including
acetaminophen, phenylephrine, hydromorphone, oxymorphone,
and naloxone that also contain phenolic hydroxyl groups in their
chemical structures (32e34). From the structure-function stand-
point, it has been reported that the crystal structure of SULT1A1
contains an L-shaped hydrophobic substrate-binding site where p-
nitrophenol, a model substrate, is bound (31). This substrate-
binding site displays plasticity so as to be able to interact with
various substrate compounds. The catalysis has been shown to be
via an SN2 in-line displacement mechanism, involving the
conserved His108 residue which is coordinated to the phenolic
group of the substrate (31). For SULT1C4, similar information is
lacking and awaits the determination of its crystal structure. In
regard to their tissue specificity of expression, SULT1A1 is known to
be expressed at high levels in human liver, lung, brain, skin,
platelets, gastrointestinal tissues and kidney (35e37); whereas
SULT1C4 has been demonstrated to be expressed at high levels in
human fetal lung, liver, small intestine and kidney, and at lower, but
significant levels in adult kidney, ovary and spinal cord (24,38).
These results, therefore, imply that the drug compounds testedmay



Table 1B
Kinetic constants of the human SULTs responsible for the sulfation of afimoxifene,
endoxifen and fulvestrant.a

Substrate/SULT Km (mM) Vmax (nmol/min/mg) Vmax/Km

Afimoxifene/SULT1A1 22.45 ± 1.31 16.36 ± 2.49 0.73
Endoxifen/SULT1C4 50.41 ± 7.08 32.58 ± 5.72 0.65
Fulvestrant/SULT1A1 4.02 ± 0.31 13.40 ± 1.55 3.33

a Data shown represent means ± SD derived from three determinations.
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be differentially metabolized through sulfation under the action of
respective SULT enzymes that are differentially expressed in the
above-mentioned human organs.

To investigate further their sulfation, the kinetics of the sulfation
of afimoxifene, endoxifen and fulvestrant by relevant human SULTs
were analyzed using varying concentrations of these three drug
compounds as substrates. Saturation curve analyses were exam-
ined using non-linear regression. Data on the sulfation of afimox-
ifene, endoxifen and fulvestrant by relevant human SULTs were
fitted to hyperbolic kinetic curves (MichaeliseMenten kinetics),
which were further verified by linear EadieeHofstee plots. Fig. 2
shows a representative set of LineweavereBurk double reciprocal
plots that were used for the calculation of Km and Vmax values. The
kinetic constants obtained are compiled in Table 1B. It should be
pointed out that the kinetics of the sulfation of raloxifen was not
examined, since the two phenolic hydroxyl groups of this drug may
both be subjected to sulfate conjugation, rendering the data diffi-
cult to interpret. In regard to this latter issue, our enzymatic assays
using raloxifen as the substrate yielded indeed two [35S]sulfated
products of raloxifen (figure not shown). Whereas in the case of
fulvestrant, while there are two hydroxyl groups in its chemical
structure, only the phenolic 3-hydroxyl group, but not the alkyl 17-
hydroxyl group, could be subjected to SULT-mediated sulfation (9).
3.2. Generation and release of [35S]sulfated products by HepG2 and
MCF-7 cells labeled with [35S]sulfate in the presence of afimoxifene,
endoxifen, raloxifene or fulvestrant

HepG2 human hepatoma cells and MCF-7 breast cancer cells
were used to investigate whether sulfation of afimoxifene, endox-
ifen, raloxifene and fulvestrant may occur under metabolic condi-
tions. As shown in Fig. 3A, autoradiograph of the TLC plate used for
Fig. 2. LineweavereBurk double-reciprocal plots of the sulfation of A) afimoxifene, B) en
the analysis of spent media of HepG2 cells labeled with [35S]sulfate
in the presence of increasing concentrations (0, 5, 10, 25, and
50 mM) of afimoxifene, endoxifen, or raloxifene revealed the gen-
eration and release of [35S]sulfated afimoxifene, endoxifen, and
raloxifene in a concentration-dependent manner. It was noted that
aminor [35S]sulfated species migrating at the same position as [35S]
sulfated endoxifen was detected in labeling medium samples of
HepG2 cells incubated in the presence of afimoxifene. In the case of
raloxifen, a minor, slower migrating [35S]sulfated species was also
detected in the spent medium samples. Whether the two [35S]
sulfated derivatives of raloxifen correspond to mono- and di-
sulfated raloxifen or whether the slower migrating [35S]sulfated
species corresponds to a metabolite of raloxifen which was sub-
sequently [35S]sulfated remains to be clarified. Intriguingly, no [35S]
sulfated derivative of fulvestrant was detected in spent labeling
medium samples of HepG2 cells incubated in the presence of ful-
vestrant. It will be important to clarify whether in HepG2 cells,
fulvestrant is differentially metabolized via other pathways, e.g.,
glucuronidation, or whether there was little uptake of fulvestrant
by HepG2 cells, resulting in little or no production of [35S]sulfated
fulvestrant. In the case of MCF-7 cells (Fig. 3B), [35S]sulfated de-
rivatives of afimoxifene, raloxifene and fulvestrant were generated
and released in a concentration-dependent manner. For endoxifen,
doxifen, and C) fulvestrant by human SULT1A1, SULT1C4, and SULT1A1, respectively.



Fig. 3. Analysis of [35S]sulfated products generated and released by (A) HepG2 human hepatoma cells and (B) MCF -7 human breast cancer cells labeled with [35S]sulfate in the
presence of different drug compounds. The figure shows the autoradiographs taken from the plates at the end of the TLC analysis. Confluent HepG2 or MCF-7 cells were incubated in
labeling media containing, respectively, 5, 10, 25, and 50 mM (corresponding to lanes 1e4) of afimoxifene, endoxifen, raloxifene and fulvestrant for 18 h. C refers to the control
labeling medium without added drug compounds. The arrows indicate the sulfated derivatives of each of the four drug compounds tested.

Table 2
Sulfating activities of human lung, liver, kidney, and small intestine cytosols with
afimoxifene, endoxifen, raloxifene, and fulvestrant as substrates.a

Substrate Specific activity (pmol/min/mg)

Lung Liver Kidney Small intestine

Afimoxifene 9.54 ± 1.67 64.67 ± 9.41 7.44 ± 0.27 63.24 ± 2.54
Endoxifen NDb 25.04 ± 2.02 ND 29.46 ± 2.69
Raloxifene 4.93 ± 0.07 63.18 ± 4.46 3.62 ± 0.09 100.50 ± 6.45
Fulvestrant 2.68 ± 0.68 77.62 ± 2.36 3.02 ± 0.50 93.01 ± 3.27
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there was also a concentration-dependent generation and release
of its [35S]sulfated derivative by cells incubated with 5, 10, and
25 mMof endoxifen. A dramatic decrease in [35S]sulfated endoxifen,
however, was noted in spent labeling medium of cells incubated
with 50 mM of endoxifen. It is possible that at elevated levels,
endoxifen may become cytotoxic, causing cell death and therefore
decreased sulfating capacity. Collectively, these results indicated
that all four drug compounds tested could be metabolized through
sulfation by HepG2 and/or MCF-7 cells.
a Specific activity refers to pmol substrate sulfated/min/mg protein. Data repre-
sent mean ± SD derived from three determinations. The concentration of the sub-
strate used in the assay mixture was 50 mM.

b ND refers to activity not detected.
3.3. Sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant
by human organ samples

To verify the presence of afimoxifene, endoxifen, raloxifene and
fulvestrant-sulfating activity in human tissues, enzymatic assays
were performed using cytosols prepared from human intestine,
liver, lung, or kidney. Activity data obtained are compiled in Table 2.
Of the four human organ samples tested, intestine and liver cyto-
sols exhibited much stronger sulfating activities than cytosols
prepared from lung and kidney toward all four tested drug com-
pounds. These results indicated that liver and intestine are better
equipped with SULT enzymes capable of sulfating these drug
compounds.
To summarize, the current study demonstrated that among the
thirteen known human SULTs, SULT1A1 displayed strongest sul-
fating activity toward afimoxifene and fulvestrant, while SULT1C4
exhibited strongest sulfating activity toward endoxifen and ralox-
ifene. Metabolic labeling experiments showed that the drug com-
pounds tested could be sulfated by HepG2 human hepatoma cells
and/or MCF-7 breast cancer cells. Of the four human organ speci-
mens tested, liver and intestine cytosols showed strong sulfating
activity toward these drug compounds. Collectively, these results



Y. Hui et al. / Journal of Pharmacological Sciences 128 (2015) 144e149 149
provided useful information concerning SULT-mediated sulfation in
the metabolism of above-mentioned breast cancer drugs. The
question whether sulfated metabolites of these drugs are still
pharmacologically active or are simply destined to be excreted from
the body, nevertheless, remains. More work is warranted in order
to find an answer to this important issue.
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